Graph Homology: Koszul and Verdier Duality
نویسنده
چکیده
We show that Verdier duality for certain sheaves on the moduli spaces of graphs associated to Koszul operads corresponds to Koszul duality of operads. This in particular gives a conceptual explanation of the appearance of graph cohomology of both the commutative and Lie types in computations of the cohomology of the outer automorphism group of a free group. Another consequence is an explicit computation of dualizing sheaves on spaces of metric graphs, thus characterizing to which extent these spaces are different from oriented orbifolds. We also provide a relation between the cohomology of the space of metric ribbon graphs, known to be homotopy equivalent to the moduli space of Riemann surfaces, and the cohomology of a certain sheaf on the space of usual metric graphs.
منابع مشابه
Poincaré/koszul Duality
We prove a duality for factorization homology which generalizes both usual Poincaré duality for manifolds and Koszul duality for En-algebras. The duality has application to the Hochschild homology of associative algebras and enveloping algebras of Lie algebras. We interpret our result at the level of topological quantum field theory.
متن کاملDualizing Complex of the Incidence Algebra of a Finite Regular Cell Complex
Let Σ be a finite regular cell complex with ∅ ∈ Σ, and regard it as a poset (i.e., partially ordered set) by inclusion. Let R be the incidence algebra of the poset Σ over a field k. Corresponding to the Verdier duality for constructible sheaves on Σ, we have a dualizing complex ω ∈ Db(modR⊗kR) giving a duality functor from Db(modR) to itself. This duality is somewhat analogous to the Serre dual...
متن کاملHolomorphic Koszul-brylinski Homology
In this note, we study the Koszul-Brylinski homology of holomorphic Poisson manifolds. We show that it is isomorphic to the cohomology of a certain smooth complex Lie algebroid with values in the Evens-Lu-Weinstein duality module. As a consequence, we prove that the Evens-Lu-Weinstein pairing on Koszul-Brylinski homology is nondegenerate. Finally we compute the Koszul-Brylinski homology for Poi...
متن کاملLinear Koszul Duality and Fourier Transform for Convolution Algebras
In this paper we prove that the linear Koszul duality isomorphism for convolution algebras in K-homology of [MR3] and the Fourier transform isomorphism for convolution algebras in Borel– Moore homology of [EM] are related by the Chern character. So, Koszul duality appears as a categorical upgrade of Fourier transform of constructible sheaves. This result explains the connection between the cate...
متن کاملKoszul and Gorenstein properties for homogeneous algebras
Koszul property was generalized to homogeneous algebras of degree N > 2 in [5], and related to N -complexes in [7]. We show that if the N -homogeneous algebra A is generalized Koszul, AS-Gorenstein and of finite global dimension, then one can apply the Van den Bergh duality theorem [23] to A, i.e., there is a Poincaré duality between Hochschild homology and cohomology of A, as for N = 2. Mathem...
متن کامل